
A Spatial Logi
 for Querying GraphsLu
a Cardelli, Philippa Gardner and Giorgio Ghelli1Abstra
t. We study a spatial logi
 for reasoning about labelled dire
tedgraphs, and the appli
ation of this logi
 to provide a query language foranalysing and manipulating su
h graphs. We give a graph des
riptionusing
onstru
ts from pro
ess algebra. We introdu
e a spatial logi
 inorder to reason lo
ally about disjoint subgraphs. We extend our logi
 toprovide a query language whi
h preserves the multiset semanti
s of ourgraph model. Our approa
h
ontrasts with the more traditional set-basedsemanti
s found in query languages su
h as TQL, Strudel and GraphLog.1 Introdu
tionSemi-stru
tured data plays an important role in the ex
hange of informationbetween globally distributed appli
ations: examples in
lude BibTex �les andXML do
uments. Whilst the resear
h
ommunity mostly agree on de�ning semi-stru
tured data using labelled dire
ted graphs or trees with `graphi
al' links, thestudy of how to query, modify and manipulate su
h data is still very a
tive.Motivating Examples A standard example used by the semi-stru
tured data
ommunity [ABS00℄ is a bibtex �le with an arti
le entry of the form:
x

y

citation

Buneman

Suciu

author

title
date

Abiteboul
‘Data on the Web’

‘2000’

publication

The global name (obje
t identi�er) x denotes the
itation name of the publi-
ation, whi
h is used to refer to the parti
ular bibtex entry. The
itation entrymight be a simple text entry, or might point to another entry in the bibtex �le.Another example with a more graphi
al emphasis is the
orresponden
e between
ounties and towns, where
ounties
ontain towns and towns are in
ounties. Amore
ompli
ated example is given by links between web pages, where names
orrespond to URLs. Su
h links display all manner of graphi
al linking. Thesesimple examples illustrate that the typi
al data models for semi-stru
tured dataare either labelled dire
ted graphs, or labelled trees with `graphi
al links'. Inthis paper, we fo
us on labelled dire
ted graphs.1 Cardelli's address: Mi
rosoft Resear
h, Cambridge. Gardner's address: Imperial Col-lege of S
ien
e, Te
hnology and Medi
ine, London. Supported by an EPSRC Ad-van
ed Fellowship. Ghelli's address: University of Pisa, Pisa.

Graph Model We use a well-known graph des
ription based on
onstru
tsfrom pro
ess algebra [CMR94℄. The models
onsist of labelled edges and twokinds of nodes: the global nodes identi�ed with unique names x; y; z and the lo-
al nodes whose identi�ers are not known. In our bibtex example, the
itation x
orresponds to a global node labelled x, whereas the author �eld has no expli
it
itation. Similarly, the Internet's Domain Name Servi
e globally registers IP ad-dresses, but not all IP addresses are global. Our notation for des
ribing graph (a)is a(x; y) j b(y; x), where a(x; y) denotes an edge and j is the usual
ompositionoperator for pro
esses used in this
ase to des
ribe multisets of edges.
Graph(a) Graph(b)a ax by x bGraph (b) is given by (lo
al y)(a(x; y) j b(y; x)). The lo
al operator is analogousto restri
tion in the �-
al
ulus. It means that the previously identi�ed node
annot now have any more edges atta
hed to it.Spatial Logi
 for Graphs Spatial logi
s were introdu
ed by Caires, Cardelliand Gordon for reasoning about trees and pro
esses [CG00,Cai99℄, and alsoby O'Hearn and Reynolds for reasoning about pointers [IO01,Rey00℄ using thebun
hed logi
 of O'Hearn and Pym [OP99℄. Su
h logi
s provide lo
al reasoningabout disjoint substru
tures. We introdu
e a spatial logi
 for analysing graphs.It
ombines standard �rst-order logi
 with additional stru
tural
onne
tives. Thestru
tural formula � j spe
i�es that a graph
an be split into two parts: one partsatisfying �, the other . Composition allows us to
ount edges. For example,9x;y; z;u: a(x;y) j b(y; z) j a(z;u) j true (y)spe
i�es that there are at least three di�erent edges in the graph, with a followingb following a. In
ontrast,
onjun
tion allows us to des
ribe paths with9x;y; z;u: (a(x;y) j true) ^ (b(y; z) j true) ^ (a(z;u) j true)des
ribing the existen
e of a path a followed by b followed by a. The path formulais satis�ed by graph (a), but the
omposition formula (y) is not.Our graph logi
 (without re
ursion) sits naturally between �rst-order logi
FOL and monadi
 se
ond-order logi
 MSOL: in FOL we
an only quantify oversingle edges; in our logi
, the formula � j true existentially quanti�es a property� over all subgraphs; in MSOL we
an arbitrarily nest quanti�
ations over sets ofedges. Our logi

an be viewed as a sublogi
 of MSOL. However, we
an reasonlo
ally about disjoint subgraphs. FOL and MSOL require
omplex disjointness
onditions to reason about su
h subgraphs: for example, the
omposition formula(y) requires su
h
onditions to spe
ify that the three edges are disjoint. Dawar,Gardner and Ghelli are studying expressivity results for the graph logi
. Our
urrent results are reported in [CGG01℄.

Query Language We de�ne a query language based on pattern mat
hing andre
ursion. Our approa
h integrates well with our graph des
ription, and
ontrastswith the standard set-based approa
h found in Cardelli and Ghelli's TQL, aquery language based on the ambient logi
 [CG01a℄, and the graphi
al querylanguages StruQL [FFK+97℄ and GraphLog [CM90℄ based on �rst-order logi
.To illustrate the standard approa
h,
onsider a simple query input graph �?a(x;y) j true: This query asks for a substitution � su
h that the satisfa
tionrelation input graph �� a(x;y) j true holds in our logi
. For example, if the inputgraph is a(x; y) j b(y; x), then there are two solutions:(a 7! a; x 7! x; y 7! y) or (a 7! b; x 7! y; y 7! x)The from/sele
t expressions take su
h solutions and build new graphs. For ex-ample, the expressionfrom input graph �? a(x;y) j true sele
t a(y;x) (�)takes every substitution � whi
h satis�es the query, and
reates a new graph
onsisting of the
omposition of the edges a�(y�;x�). In our example, the result-ing new graph is a(y; x) j b(x; y). Given the input graph a(x; y) j a(x; y) instead,there is one substitution � : x 7! x;y 7! y whi
h satis�es the query. The result-ing graph is just a(y; x). This
ollapse of information
an be an advantage. Itdoes mean however that we
annot a

urately take a
opy of a graph.Instead we de�ne a query language based on queries and transdu
ers. Queriesbuild new graphs from old. Transdu
ers relate input graphs with output graphs.A basi
 transdu
er � V Q relates any input graph satisfying � with the queryQ whi
h might depend on witnesses from �. For example, the transdu
er9a;x;y: (a(x;y) j true V a(y;x))relates an input graph with edge a�(x�;y�) with the output graph a�(y�;x�).Given the input graph a(x; y) j b(y; x), there are two possible output graphs,either a(y; x) or b(x; y). This example does the pattern-mat
hing part of thefrom/sele
t expression (�). It does not
ombine the inverted edges. Instead thisrole is played by re
ursion. Consider the transdu
erR def= (nilV nil) _ (9a;x;y: (a(x;y) V a(y;x)) jR)Either the input graph is empty and relates to the empty output graph. Or theinput graph
an be split into an edge and the rest of the graph. The outputgraph
onsists of the inverted edge
omposed with the output asso
iated withthe remaining graph. Given input graph a(x; y) j a(x; y) for example, the outputgraph is the exa
t inverted
opy a(y; x) j a(y; x).We study two query languages: a basi
 language whi
h
an express our mo-tivating examples, and a general language whi
h has a simple formalism but istoo expressive to implement. We were surprised to observe that the from/sele
texpressions
an be embedded in our general language.

2 Labelled Dire
ted GraphsWe use a simple graph algebra [CMR94℄ to des
ribe labelled dire
ted graphs.Assume an in�nite set X of names ranged over by u; : : : ; z, and an in�nite setof edge labels A ranged over by a; b;
. We also use the notation ~z to denote asequen
e of names, and j~z j to denote the length of the sequen
e.Definition 1The set G(X ;A) of graph terms generated by X and A is given by the grammarG ::= nil emptya(x; y) edgeG jG
omposition(lo
al x)G hidingWe sometimes write G instead of G(X ;A). The de�nitions of free and boundnames are standard: the hiding operator (lo
al x)G binds x in G; x is free inpro
ess a(x; y). We write fn(G) to denote the set of free names in G. We use the
apture-avoiding substitution, denoted by Gfy=xg.Our graph model is based on a multiset semanti
s, with the graph terma(x; y) j a(x; y) denoting a graph with two edges. We give a natural stru
tural
ongruen
e on graph terms (de�nition 2) whi
h
orresponds to the usual notionof graph isomorphism [CMR94℄. Our
hoi
e
ontrasts with the approa
h taken inthe query language StruQL, whi
h has a set-based semanti
s with a(x; y) j a(x; y)
orresponding to a(x; y). It also
ontrasts with the language UnQL [BDHS96℄,whi
h is based on graph bisimulation rather than graph isomorphism.Definition 2The stru
tural
ongruen
e between graph terms, written �, is the smallest
on-gruen
e
losed with respe
t to j and (lo
al x) , and satisfying the axioms:G j nil � G (lo
al x)(lo
al y)G � (lo
al y)(lo
al x)G(G1 jG2) jG3 � G1 j (G2 jG3) (lo
al x)(G1 jG2) � (lo
al x)G1 jG2; x 62 fn(G2)G1 jG2 � G2 jG1 (lo
al x)nil � nil(lo
al x)G � (lo
al y)Gfy=xg; y 62 fn(G)2.1 Comparison with Cour
elleWe give a set-theoreti
 des
ription of graphs in the spirit of Cour
elle [Cou97℄,whi
h is equivalent to our graph des
ription. We have made some di�erent
hoi
esto Cour
elle, whi
h we will dis
uss after the de�nition. We assume disjoint in�-nite sets of verti
es V , edge identi�ers E , edge labels A, and names X .

Definition 3The graph stru
ture GS = hV [E [A; fedge � E �A� V � V g; sr
 : X ! V iis de�ned by1. V � V , E � E , A � A, X � X are �nite sets;2. ea
h edge identi�er has a unique label, domain node and
odomain node:8e; ai; vi; wi:edge(e; a1; v1; w1)^ edge(e; a2; v2; w2)) a1 = a2 ^ v1 = v2 ^w1 = w2;3. the edge identi�ers, edge labels and verti
es are related using edge:8d 9d1; d2; d3:edge(d; d1; d2; d3) _ edge(d1; d; d2; d3) _ edge(d1; d2; d; d3) _ edge(d1; d2; d3; d)4. sr
 is an inje
tive fun
tion.This de�nition di�ers from Cour
elle's approa
h in several ways. Cour
elle per-mits nodes to be unatta
hed to edges. He
onsiders both �nite and in�nitegraphs, whereas we use the �nite
ase sin
e it is enough for this paper. He alsodoes not treat A as part of the domain. Instead, he de�nes a family of relationsedgea � E � V � V . This last point is signi�
ant when
omparing our di�erentlogi
s for reasoning about graphs. Cour
elle
onsiders two systems, one where sr
is inje
tive and one where it is not. The graphs presented here
orrespond to theinje
tive
ase; the non-inje
tive
ase
orresponds to adding name fusions x = yto our graphi
al des
ription, as introdu
ed by Gardner and Wis
hik [GW00℄.In [Cou97℄, Cour
elle studies a graph grammar whi
h is similar to ours. Cour-
elle's motivation is to explore the expressive power of MSOL. In
ontrast, ourmotivation is to use our graphs to model semi-stru
tured data, and to introdu
ea spatial logi
 for lo
ally reasoning about su
h data.3 The Graph Logi
We will only
onsider the simple
ase of graphs without hiding. It is possible toin
orporate a quanti�er for reasoning about hidden nodes [CC01,CG01b℄, and webelieve that our query language will extend. For the rest of this paper, G rangesover the terms generated by the simple grammar: G ::= nil j a(x; y) j G jG.The set G(X ;A) denotes the set of all su
h terms.3.1 Logi
al FormulaeFormulae are
onstru
ted from a name set X and label set A. They also dependon the disjoint sets of name variables VX , label variables VA and parametrisedre
ursion variables VR. A re
ursion variable R
omes with a �xed arity jRj.Definition 4 (Logi
al formulae)The set of pre-formulae Fpre(X ;A) is given by the grammarsname expressions � ::= x name, x 2 Xx name variablelabel expressions � ::= a label, a 2 Aa label variable

formulae �; ::= nil empty�(�1; �2) edge� j
ompositiontrue true� ^
onjun
tion:�
lassi
al negationquanti�ers 9x:� exist. quant. over names9a:� exist. quant. over labelsre
ursion R(~�) jRj = j~�j(�R(~x): �)~� least �x-pt; j~�j = j~xj = jRj;R(~�) o

urs positively,equality tests �1 = �2; �1 = �2 equalitiesThe sets of free variables are standard. The set of formulae F(X ;A) are thosepre-formulae with no free re
ursion variables. The order of binding pre
eden
eis = ; : ; j ; ^ , with negation binding strongest. We write x 6= y for:(x = y). The s
ope of 9x: and �R(~x): is always the maximum possible.The nil formula spe
i�es the empty graph. The edge formula �(�1; �2) spe
i�esthat a graph is just one edge. The
omposition formula � j spe
i�es that agraph
an be split into two parts with one part satisfying � and the other .The other formulae should be familiar. It is also logi
ally natural to add other
onne
tives su
h as a spatial negation and impli
ation [OP99,CG00℄.3.2 Satisfa
tion RelationThe satisfa
tion relation determines whi
h graphs satisfy whi
h formulae. It isde�ned by an interpretation fun
tion whi
h maps pre-formulae to sets of graphs.Definition 5 (Satisfa
tion)We assume name set X and edge set A. Let � : VX ! X denote a substitutionfrom name and label variables to names and labels respe
tively, and let � sendre
ursion variables of arity n to elements of the set of fun
tions (Xn ! P(G)).The satisfa
tion interpretation [[℄℄�;� : Fpre ! P(G) is de�ned indu
tively by:[[nil℄℄�;� = fG : G � nilg[[�(�1; �2)℄℄�;� = fG : G � ��(�1�; �2�)g[[� j ℄℄�;� = fG : G � G1 jG2 ^G1 2 [[�℄℄�;� ^G2 2 [[℄℄�;�g[[true℄℄�;� = G[[� ^ ℄℄�;� = [[�℄℄�;� \ [[℄℄�;�[[:�℄℄�;� = G=[[�℄℄�;�[[9x: �℄℄�;� = [x2X [[�℄℄�;x7!x;�

[[9a: �℄℄�;� = [a2A[[�℄℄�;a7!a;�[[R(~�)℄℄�;� = R�(~��); j~�j = n; R� : Xn ! P(G)[[(�R(~x):�)~�℄℄�;� = (fS 2 (X j~xj ! P(G)) : (�~y: [[�℄℄�;~x7!~y;�;R 7!S) v Sg)(~��)where S v S0 i� 8~y 2 X j~xj: S(~y) � S0(~y)[[�1 = �2℄℄�;� = G; if �1� = �2�; ; otherwise[[�1 = �2℄℄�;� = G; if �1� = �2�; ; otherwiseDe�nition 5 is shown to be well-de�ned by stru
tural indu
tion on formulae. Forthe re
ursive
ase, observe that the set of all pointwise-ordered total fun
tions oftype X j~xj ! P(G) is a
omplete latti
e. De�ne the satisfa
tion relation G �� �for formula � if and only if G 2 [[�℄℄�; , where denotes an arbitrary �.Proposition 6 (Satisfa
tion Properties)The satisfa
tion relation satis�es the following standard properties:G �� nil , G � nilG �� �(�1; �2), G � ��(�1�; �2�)G �� � j , 9G1; G2 2 G: (G � G1 jG2 ^ G1 �� � ^G2 ��)G �� true , G 2 GG �� � ^ , G �� � ^ G �� G �� :�, :(G �� �)G �� 9x:�, 9x 2 X : G �� �fx=xgG �� 9a:�, 9a 2 A: G �� �fa=agG �� (�R(~x): �)(~�), G �� �f~�=~xg[(�R(~x):�)=R℄G �� �1 = �2 , �1� = �2�G �� �1 = �2 , �1� = �2�The re
ursion
ase requires a substitution and monotoni
ity lemma showing thatthe fun
tion �~y: [[�℄℄�;~x7!~y;�;R 7!S is monotone in S. Then we apply the �x-pointtheorem.Definition 7 (Derived Formulae)We give some derived formulae whi
h are used throughout the paper:false def= :true � jj def= :(:� j :)� _ def= :(:� ^ :) subgraph9(�) def= � j true�) def= :� _ subgraph8(�) def= � jj false8x: � def= :9x::�The
onne
tive jj is the de Morgan dual of j . The binding pre
eden
e is ^ ,_ ,) , with
onjun
tion binding strongest. The s
ope of 8x: is the maximumpossible.

Example We revisit the two examples dis
ussed in the introdu
tion:9x;y; z;u: a(x;y) j b(y; z) j a(z;u) j true9x;y; z;u: (a(x;y) j true) ^ (b(y; z) j true) ^ (a(z;u) j true)Re
all that the �rst formula spe
i�es that a graph has at least three di�erentedges; the se
ond that a graph has a path of three edges.Example We spe
ify the property that there exists a path from x to y in ourlogi
 without re
ursion. This is interesting sin
e it is not expressible in �rst-orderlogi
 without re
ursion. First we give some preliminary derived formulae:no edge into x in0(x) def= :9y; a: a(y; x) j truen+ 1 edges into x inn+1(x) def= 9y; a: a(y; x) j inn(x)a minimal graph satisfying � min(�) def= � ^ :(� j :nil)x is a node in the graph in graph(x) def= 9y; a: (a(x;y) _ a(y; x)) j trueThe formulae outn(x) are de�ned similarly to inn(x). We now give a formulawhi
h spe
i�es that a graph is just a straight path from x to y and does not
ontain a
y
le (when x = y the formula is satis�ed by the empty graph):straight path(x;y) def= min[x = y _ (in0(x) ^ out1(x) ^ in1(y) ^ out0(y)^8z: z 6= x ^ z 6= y ^ in graph(z)) out1(z) ^ in1(z))℄This formula spe
i�es that the graph
ontains one start node x, one end nodey and all the other nodes must have one in
oming and one outgoing edge(hen
e no
y
les). Minimality ensures that there are no dis
onne
ted
y
les. Theproperty that there exists a path from x to y is now spe
i�ed by the formulaexists path(x;y) def= subgraph9(straight path(x;y)).ExampleWe give an equivalent formula to exists path(x; y) using re
ursion|weuse the notation R(~x) def= �, as an abbreviation for R(~�) def= (�R(~x): �)(~�):exists path(x;y) def= x = y _ (9z; a: a(x; z) j exists path(z;y)):This
ombination of
omposition and re
ursion
an be regarded as an indu
tionon the graph stru
ture. Consider the graph a(x; z) j b(z; z) j
(z; y). There are justtwo ways to
he
k that this graph satis�es the formula: either by
he
king thatedge a is followed by
; or that a is followed by b is followed by
.Example A
lassi
 property asso
iated with
ompiler optimisation is `a node zdominates node y i� every path from some de
lared initial node x to y passesthrough z'. First we spe
ify the property that a graph is a path from x to y:path(x;y) def= (x = y ^ nil) _ (9z; a: a(x; z) jpath(z;y))The addition of nil ensures that all the edges are
he
ked. For example, in grapha(x; z) j b(z; z) j
(z; y) the only way that path(x;y) is satis�ed is by
he
kingthat a follows b follows
. It is now simple to spe
ify the property we seek:dominates(x; y; z) def= subgraph8(path(x; y)) in graph(z)):

4 A Query LanguageOur basi
 language
onsists of queries and transdu
ers. Queries build new graphsfrom old. Transdu
ers asso
iate input graphs with output graphs. These
on
eptsare related. The basi
 transdu
er � V Q relates input graphs satisfying � withoutput graphs given by Q. The query (apply � to Q) applies the transdu
er �to the input graphs given by Q, to yield the
orresponding set of output graphs.Definition 8 (Query Language)The sets of pre-queries and pre-transdu
ers, denoted Qpre(X ;A) and Tpre(X ;A)respe
tively, are given by the grammars from de�nition 4 and the grammars:Q ::= queries � ::= transdu
ersG graph variable �V Q basi
 transdu
ernil empty graph �G:Q abstra
tion�(�1; �2) edge graph � j � transdu
er
ompositionQ jQ
omposition � _ � disjun
tionapply � to Q appli
ation 9x:� exist. quant. of names9a:� exist. quant. of labelsRT re
ursion�RT: � least �x-pt, RT positiveThe sets of queries and transdu
ers, denoted by Q(X ;A) and T (X ;A),
ontainthose pre-queries and pre-transdu
ers with no free re
ursion variables. We useRT def= � to denote RT def= �RT: � . We overload notation: j denotes the
ompo-sition of formulae, queries and transdu
ers. The
onne
tive V has the weakestbinding strength; the other
onne
tives are as before. A glaring omission is theabsen
e of a renaming te
hnique for node identi�ers, su
h as Skolemization. Ourapproa
h is enough for this paper. Other transdu
er
onne
tives are feasible. Our
hoi
e was determined by our aim to have a simple language in whi
h to expressour motivating examples. We des
ribe a more general approa
h in se
tion 4.1.Definition 9 (Query interpretation)Assume name set X and label set A. Let � denote a substitution from name andlabel variables to names and labels respe
tively, let Æ denote a substitution fromgraph variables to elements of G, and let fun
tion � map transdu
er re
ursionvariables to the set P(G � G). The query interpretation [[℄℄�;� ;� : Qpre ! P(G)and the transdu
er interpretation [[℄℄�;�;� : Tpre ! P(G � G), are de�ned by asimultaneous indu
tion on the stru
ture of pre-queries and pre-transdu
ers:[[G℄℄�;Æ;� = fG : G � GÆg[[nil℄℄�;Æ;� = fG : G � nilg[[�(�1; �2)℄℄�;Æ;� = fG : G � ��(�1�; �2�)g[[Q1 jQ2℄℄�;Æ;� = fG : G � G1 jG2 ^G1 2 [[Q1℄℄�;Æ;� ^G2 2 [[Q2℄℄�;Æ;�g[[apply � to Q℄℄�;Æ;� = fG0 : 9G: (G;G0) 2 [[� ℄℄�;Æ;� ^G 2 [[Q℄℄�;Æ;�g

[[�V Q℄℄�;Æ;� = f(G;G0) : G 2 [[�℄℄�; ^G0 2 [[Q℄℄�;Æ;�g[[�G: Q℄℄�;Æ;� = f(G;G0) : G0 2 [[Q℄℄�;Æ;G 7!G;�g[[�1 j �2℄℄�;Æ;� =f(G;G0) : G � G1 jG2 ^G0 � G01 jG02 ^ (G1; G01) 2 [[�1℄℄�;Æ;� ^ (G2; G02) 2 [[�2℄℄�;Æ;�g[[�1 _ �2℄℄�;Æ;� = [[�1℄℄�;Æ;� [[[�2℄℄�;Æ;�[[9x:� ℄℄�;Æ;� = Sx2X [[� ℄℄�;x7!x;Æ;�[[9a:� ℄℄�;Æ;� = Sa2A[[� ℄℄�;a7!a;Æ;�[[RT℄℄�;Æ;� = RT�[[�RT: �℄℄�;Æ;� = TfS 2 P(G � G) : [[�℄℄�;Æ;�;RT 7!S � SgExample: inverting edges Consider the transdu
er9a;x;y: a(x;y) j true V a(y;x)It returns one inverted edge of any non-empty input graph. The transdu
er isnon-deterministi
: given input graph a(x; y) j b(y; x), the set of possible outputgraphs is fa(y; x); b(x; y)g. Now
onsider the queryapply (9a;x;y: a(x;y) j true V a(y;x)) to input graphWhen the input graph is a(x; y) j b(y; x) the resulting output is either a(y; x) orb(x; y); when the input graph is a(x; y) j a(x; y) the result
an only be a(y; x).Example:
ase analysis The
onne
tive _
an be used for
ase analysis:(nilV nil) _ (9a;x;y: a(x;y) j true V a(y;x))Either the input graph is empty and we return the empty output graph. Or theinput graph is non-empty and we return an inverted edge.Example: exa
t inverted
opy We
an exe
ute a query against every edge.For example, the transdu
er relating an input graph with its inverted
opy isRT def= (nilV nil) _ (9a;x;y: a(x;y) V a(y;x)) jRTEither the input graph is empty and we return the empty graph. Or the graph
an be split into an edge and the rest of the graph. We return the invertededge and exe
ute the transdu
er on the smaller graph. Given the input grapha(x; y) j a(x; y), we return the exa
t inverted
opy.We
an adapt this example to exe
ute a query against every edge providedit satis�es a
ertain logi
al formula. For example,
onsider the transdu
erRT def= (nilV nil) _(9a;x;y: ((a(x;y) ^ x 6= y V a(y;x)) _ (a(x;y) ^ x = y V nil)) jRT)Either the input graph is empty and we return the empty graph. Or the inputgraph is non-empty and we pi
k an edge. If the domain and
odomain of the

edge are di�erent then return the inverted edge; if they are the same then returnthe empty graph. Apply the transdu
er to the remaining smaller graph.Example: transitive
losure A standard example is the transitive
losure ofa graph. It illustrates the power of mixing abstra
tion with re
ursion. For thisexample only, we assume the edge labelled set A = fag. The following transdu
er,when applied to graph G, returns the minimum graph TC whi
h
ontains G andsatis�es the property: if a(x; y) and a(y; z) are in TC then so is a(x; z):RT def= �G: (:9x;y; z: (a(x;y) j true ^ a(y; z) j true ^ :(a(x;y) j true))V G) _9xy; z: a(x;y) j true ^ a(y; z) j true ^ :(a(x; z) j true)V apply RT to (G j a(x; z))4.1 Generalised Transdu
ersWe generalise the de�nition of transdu
ers (de�nition 8). Our approa
h is simple,but too expressive to implement. The semanti
 interpretation (de�nition 11)gives us the
exibility to adapt our
hoi
e of basi
 language if we wish.Definition 10 (Generalised Transdu
ers)Assume name set X and label set A. The set of generalised pre-transdu
ers, de-noted GT pre(X ;A), is given by the grammar:� ::= id identity nil empty input graph�1; �2
omposition . . . analogous
ases from de�nition 4G graph variable 9G:� existential quanti�
ation over graphsGeneralised transdu
ers relate input and output graphs. A logi
al formula � re-garded as a generalised transdu
er relates input graphs satisfying � to arbitraryoutput graphs. The identity transdu
er relates stru
turally
ongruent graphs.The transdu
er
omposition �1; �2 is relational
omposition. Identity and
om-position allows us to spe
ify properties of the output graphs. For example, thetransdu
er true; (�^ id) relates arbitrary input graphs with output graphs satis-fying �. Queries
orrespond to su
h generalised transdu
ers.Definition 11 (Interpretation of Generalised Transdu
ers)Assume name set X and label set A. The query interpretation [[℄℄�;Æ;� : GT !P(G � G), where � denotes a substitution from name and label variables tonames and labels respe
tively, Æ maps graph variables to graphs, and fun
tion �maps re
ursion variables of arity n to fun
tions Xn ! R(G � G), is de�ned byindu
tion on the stru
ture of the extended formulae:[[id℄℄�;Æ;� = f(G;G0) : G � G0g[[�1; �2℄℄�;Æ;� = f(G;G0) : 9G1: (G;G1) 2 [[�1℄℄�;Æ;� ^ (G1; G0) 2 [[�2℄℄�;Æ;�g[[G℄℄�;Æ;� = fG : GÆ = Gg � G[[nil℄℄�;Æ;� = fG : G � nilg � G[[�(�1; �2)℄℄�;Æ;� = fG : G � ��(�1�; �2�)g � G[[�1 j �2℄℄�;Æ;� =f(G;G0) : G � G1 jG2 ^G0 � G01 jG02 ^ (G1; G01) 2 [[�1℄℄�;Æ;� ^ (G2; G02) 2 [[�2℄℄�;Æ;�g

[[true℄℄�;Æ;� = G � G[[�1 ^ �2℄℄�;Æ;� = [[�1℄℄�;Æ;� \ [[�2℄℄�;Æ;�[[:� ℄℄�;Æ;� = (G � G) n [[� ℄℄�;Æ;�[[9x:� ℄℄�;Æ;� = Sx2X [[� ℄℄�;x7!x;Æ;�[[9a:� ℄℄�;Æ;� = Sa2A[[� ℄℄�;a7!a;Æ;�[[9G:� ℄℄�;Æ;� = SG2G[[� ℄℄�;Æ;G 7!G;�[[R(~�)℄℄�;Æ;� = R�(~��)[[(�R(~x): �)(~�)℄℄�;Æ;� = (fS 2 X j~xj ! P(G � G) : �~y: [[� ℄℄�;~x7!~y;Æ;�;R7!S v Sg)(~��)where S v S0 i� 8~y 2 X j~xj: S(~y) � S0(~y)[[�1 = �2℄℄�;� = G � G if �1� = �2�; ; otherwise[[�1 = �2℄℄�;� = G � G if �1� = �2�; ; otherwiseProposition 12There exists embeddings ()Æ : Qpre ! GT pre, ()Æ : F ! GT pre and ()Æ : Tpre !GT pre su
h that1. for all queries Q, [[QÆ℄℄�;Æ;� = G � [[Q℄℄�;Æ;�;2. for all logi
al formulae �, [[�Æ℄℄�;Æ;� = [[�℄℄�; � G;3. for all basi
 transdu
ers � , [[�Æ℄℄�;Æ;� = [[� ℄℄�;Æ;� :Proof. The embeddings are give in [CGG01℄. The query (apply � to Q) is inter-preted by the sequential
omposition. The basi
 transdu
er �V Q is interpretedby
onjun
tion. The abstra
tion �G: Q by the existential quanti�
ation on G.Example Consider the derived transdu
ers:subgraph def= id j (nilV true) stri
t subgraph def= id j (nilV :nil)�1;; �2 def= :(�1;:�2) min out (�) def= � ^ :(� ; stri
t subgraph)�nite lub (�) def= min out(� ;; subgraph)The transdu
er subgraph relates G1 to G2 if and only if G1 � G2: that is,G1 jH � G2 for some H . The stri
t subgraph is the stri
t version. The
onne
tive;; is the de Morgan dual of ;. Unravelling the de�nition, it states that(G;G0) 2 [[�1;; �2℄℄�;Æ;� , (8G1: (G;G1) 2 [[�1℄℄�;Æ;�) (G1; G0) 2 [[�2℄℄�;Æ;�)This operator allows us to work with all output graphs asso
iated with a giveninput. For example, the transdu
er � ;; subgraph relates a graph G with all the�nite upper bounds of [[� ℄℄(G) (where [[� ℄℄(G) is the set of all graphs G0 su
hthat (G;G0) 2 [[� ℄℄). These �nite upper bounds do not ne
essarily exist, in whi
h
ase [[� ;; subgraph℄℄(G) is the empty set. We may adapt our �nite semanti
s to thein�nite
ase, by using the in�nite version of the set-theoreti
 presentation given inse
tion 2.1. Themin out(�) transdu
er relates a graphG with the minimal graphsin [[� ℄℄(G). The transdu
er �nite lub (�) relates a graph G with the minimal �niteupper bound of [[� ℄℄(G), when it exists. The in�nite semanti
s would give rise to

a least upper bound. In the introdu
tion, we dis
uss a standard set-theoreti
language based on from/sele
t expressions. These expressions are embeddable inour general language using this �nite-lub
onstru
tion [CGG01℄.We must give an in-depth
omparison between our query language and otherquery languages based on graphs [FFK+97,CM90,BDHS96℄. Our language is
losely related to XDu
e [HP01℄, a pro
essing language for XML do
umentsbased on pattern-mat
hing and a simple typing s
heme analogous to the stru
-tural
omponent of our spatial logi
. Our ambitious aim is to a
hieve a level ofunderstanding of query languages for semi-stru
tured data whi
h rivals that oflanguages asso
iated with the relational model.Referen
es[ABS00℄ S. Abiteboul, P. Buneman, and D. Su
iu. Data on the Web. Morgan Kauf-mann, 2000.[BDHS96℄ P. Buneman, S. Davidson, G. Hillebrand, and D. Su
iu. A query lan-guage and optimization te
hniques for unstru
tured data. In SIGMOD,LNCS 2044, pages 505{515, 1996.[Cai99℄ L. Caires. A Model for De
larative Programming and Spe
i�
ation with Con-
urren
y and Mobility. PhD thesis, University of Lisbon, 1999.[CC01℄ L. Caires and L. Cardelli. A spatial logi
 for
on
urren
y (part 1). In TACS,LNCS 2215. Springer, 2001. Journal paper to be in Information and Comp.[CG00℄ L. Cardelli and A. Gordon. Anytime, anywhere: Modal logi
s for mobileambients. In POPL. ACM, 2000.[CG01a℄ L. Cardelli and G. Ghelli. A query language based on the ambient logi
. InESOP/ETAPS, LNCS 2028. Springer, 2001.[CG01b℄ L. Cardelli and A. Gordon. Logi
al properties of name restri
tion. In TLCA,LNCS 2044. Springer, 2001.[CGG01℄ L. Cardelli, P. Gardner, and G. Ghelli. A spatial logi
 for querying graphs.Fuller version found at http://www.do
.i
.a
.uk/~pg, 2001.[CM90℄ M. Consens and A. Mendelzon. Graphlog: a visual formalism for real lifere
ursion. In Prin
iples of Database Systems, pages 404{416. ACM, 1990.[CMR94℄ A. Corradini, U. Montanari, and F. Rossi. An abstra
t ma
hine for
on
ur-rent modular systems: Charm. TCS, 122:165{200, 1994.[Cou97℄ Bruno Cour
elle. The expression of graph properties and graph transfor-mations in monadi
 se
ond-order logi
. Graph grammars and
omputing bygraph transformations, 1:313{400, 1997.[FFK+97℄ M. Fernandez, D. Flores
u, J. Kang, A. Levy, and D. Su
iu. Strudel: Aweb-site management system. In SIGMOD Management of Data, 1997.[GW00℄ P. Gardner and L. Wis
hik. Expli
it fusions. MFCS, LNCS 1893, 2000.Journal version submitted to Theoreti
al Computer S
ien
e.[HP01℄ H. Hosoya and B. Pier
e. Regular expression pattern mat
hing for xml. InPOPL. ACM, 2001.[IO01℄ S. Ishtiaq and P. O'Hearn. Bi as an assertion language for mutable datastru
tures. In POPL, 664. ACM, 2001.[OP99℄ P. O'Hearn and D. Pym. The logi
 of bun
hed impli
ations. Bulletin ofSymboli
 Logi
, 5(2):215{244, 1999.[Rey00℄ J.C. Reynolds. Intuitionisti
 reasoning about shared mutable data stru
ture.Millenial Perspe
tives in Computer S
ien
e, Palgrove, 2000.

